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Localization of electronic states in finite ladder models: Participation ratio and localization
length as measures of the wave-function extension
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In this work we discuss and compare different definitions for localization of electronic states in low-
dimensional systems. We choose a heuristic model for DNA-like molecules as a system prototype in order to
establish ranges of equivalence for the localization length obtained from both the conductance and participation
ratios. The results suggest also criteria to infer the extension of wave function in mesoscopic systems within
the diffusive transport regime as complementary information to the localization length.
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I. INTRODUCTION

The recent interest on the electronic applications of DNA
molecules has already motivated an astonishing amount of
literature,! although a consensus on the transport properties
of such a complex system has not yet been established. From
the theoretical point of view, such complexity has to be
handled having in mind different length scales:> first-
principles calculations for short base-pair (bp) sequences and
heuristic models for sequences in the long macromolecular
range. The disclosure of the electronic structure of short
DNA chains in very strict conditions begins to be addressed
by combining powerful experimental tools such as scanning
tunneling microscopy and first-principles calculations for
few tens of base pairs.3 On the other hand, one of the
frameworks to investigate the electronic properties on a
mesoscopic scale is the use of tight-binding ladder models
with effective sites for the nucleotides.* Experimental results
may be simulated by such simple models, such as the semi-
conductorlike current-voltage characteristics® or interband
optical transitions.® Having in mind the possible nanoelec-
tronic applications of DNA, transport properties have been
the focus of a wide span of investigative approaches, since
such a fascinating system with intrinsic (due to the huge
number of degrees of freedom of macromolecules) and ex-
trinsic (due to the environmental aspects, presence of sub-
strate, solvent, counterions, and electric contacts) complexi-
ties may show competing transport mechanisms. Although a
comprehensive scenario is out of the scope of this paper, an
overview may be gained in recent reviews:’ static and dy-
namic fluctuations as well as environmental effects have to
be considered. Here again two strategies in addressing the
charge-transfer problem can be identified. We may find either
examples of heuristic models for polarons in DNA (Refs. 8
and 9) or first-principles combined to empirical approaches
as a methodology for investigating the charge transfer.!”

One of the several aspects involved in the analysis of the
DNA electronic and transport properties is the localization of
states, here from the point of view of heuristic ladder mod-
els: possible localization-delocalization transitions have been
alluded as a consequence of long-range correlations along
the DNA-like chains.!" One previous work!? has called the
attention to the localization length enhancement due to the
base pairing, when comparing a single strand to the corre-
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sponding double-strand structure. This localization length
enhancement, leading to a wave-function extension compa-
rable to the sample length, has been called effective delocal-
ization. The expression “effective delocalization” has been
sparsely used in different contexts, from charge spreading
out through a polymer chain'? to transport in finite quantum
Hall systems.14 In this last situation, an effective delocaliza-
tion is defined in the exact sense we are dealing with in the
present paper: in a finite sample the states with a localization
length larger than the sample size L are effectively
delocalized.'*

The use of effective delocalization in the present paper is
motivated by the fact that the quest for DNA-based electron-
ics has to be set for mesoscopic and not macroscopic dimen-
sions. Therefore, the system size becomes an important
length scale in the problem, and if we recall the transport
regimes in mesoscopic systems, the localization length, /.,
and the system size, L, are directly compared within two
regimes:! the localized regime with L>[. and the diffusive
regime where L <</.. Finite DNA-like double strands seem to
offer an intermediate stage to these two regimes, which is
related, as will be seen, to wave-function extensions that are
much longer than /., suggesting a less restrictive definition of
effective delocalization, namely, in the range L=~ [.. Another
previous result suggests a bona fide delocalization for the
same ladder model, but for unrealistic interchain coupling,
therefore, of prospective academic interest as a toy model.'?
The properties of this model, with stronger interchain than
intrachain coupling, are indeed in the diffusive regime,
showing a significant conductance even at very long length
scales, although not truly delocalized in the thermodynamic
limit, as pointed out by other groups.'®~'® Nevertheless, a
comprehensive scenario for the possible resonant effects and
intrachain correlations, even for effective DNA models, is
not fulfilled,'® and analyzing transport properties of effective
DNA models is also relevant from a biological point of view,
such as studying DNA repairing deficiencies.?’ However, one
should keep in mind the aforementioned complexity of the
problem and how transmission resonance effects may be
conciliated with other charge-transfer mechanisms, for in-
stance, polaron hopping, or even combined polaron-
bipolaron-tunneling pathways,?! continuous an open ques-
tion.

On the other hand, a central discussion is related to the
consistency among distinct measures of localization, such as

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.78.235404

H. CARRILLO-NUNEZ AND PETER A. SCHULZ

T G
A C

FIG. 1. The model DNA system with the four effective nucle-
otides: A, T, C, and G. At the left side in a double chain with base
pairing and at the right side separated in single strands. Throughout
this work we will consider the limiting case of a completely random
sequencing along the chains.

the Thouless number,?? spectral statistics,” inverse participa-
tion ratio (PR) (Ref. 24) (and the related participation ratio),
Lyapunov exponents, localization length,? or the geometric
average of the density of states.’®>’ Here we focus on the
comparison between two definitions of localization: the PR
(Ref. 28) together with the derived participation number
(PN) and [, obtained from the conductance?® in the situation
depicted above, namely, for L=, i.e., an effective delocal-
ization regime. This comparison leads to similar localization
lengths for both methods, whenever /. <L, while for L=,
the PN and /. from conductance strongly fluctuate and devi-
ate from each other. Actually such fluctuations and devia-
tions may start already for system lengths an order of mag-
nitude longer than /. obtained in the thermodynamic limit.
These results suggest that for finite systems, the extension of
the wave function may be as important as the localization
length!” in order to characterize the electronic properties. It
should be also mentioned that the question posed here—
effects of localization lengths comparable to the system
lengths on transport properties in a mesoscopic length
scale—is closely related to a growing branch in measuring
localization, namely, probing localization in open
systems.?30 Therefore, comparing closed and open systems
localization measures, such as PR and [, starts also to be-
come relevant.

In what follows we briefly describe our model Hamil-
tonian for a double chain simulating a double-strand DNA,
as well as the approach necessary for obtaining the conduc-
tance. The localization definitions, PR and /., used through-
out the paper are also introduced. Careful comparisons be-
tween both methods are undertaken afterwards and used in
the qualitative characterization of a wave-function extension,
wa.

II. NUMERICAL MODEL

The starting point for analyzing the localization of elec-
tronic states in a heuristic DNA-like system is to consider an
effective double-strand model, consisting of two parallel
chains N, sites long that can be connected at both ends to
semi-infinite ideal nondisordered leads. The base paring is
introduced by means of four different effective sites, repre-
senting the nucleotides, A, T, C, and G with specific binding
properties: only A-T and C-G pairs are possible (see Fig. 1).
This base paring correlation is the only one to be taken into
account in the present work since the nucleotide sequencing
is completely random. The DNA-like double strands are,
therefore, described by a two-channel tight-binding model
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with nearest-neighbor interactions only. In this approxima-
tion, the suitable Hamiltonian can be written as

Ny 2
H=2 2 (g |1, j] + Vi i) + 1] + V]ij)i = 1,

i=1 j=1

+ Vi, j)ij + 1]+ V']i ) = 1]). (1)

According to values suggested in the literature, we use the
following site energies: &,=8.24 eV, &;=9.14 eV, &,
=8.87 eV, and £,=7.75 eV.3! The intrachain hopping pa-
rameters, between two adjacent nucleotides and for inter-
chain coupling, are V=1.0 eV and V'=0.5 eV,'? respec-
tively. This set of parameters has been used in several ladder
models for DNA (Refs. 16-19 and 32-34) and represents a
qualitatively sound parametrization obeying the expected
condition of V' <V. Other parameters set (within the same
model) may simulate more properly the semiconductorlike
electronic structure,>*3 but we considered the present set as
adequate for the focus of the present paper: the localization
of the states in ladder models and the possible comparison to
previous works on the subject.* One should recall, however,
that the parameters set used here is an empirical choice and
that the problem of reducing the full DNA Hamiltonian to a
single (effective) orbital tight-binding model is still
debatable.

In order to obtain the localization length from the conduc-
tance we will focus on the transmission probabilities, which
are directly related to the total Green’s function of the system
calculated by means of the recursive approach for a lattice of
sites treated in a tight-binding approximation.’”3¥ A detailed
description of this procedure for the transmission probabili-
ties in terms of the Green’s function is already given in
textbooks.>

At zero-temperature limit, the linear conductance is re-
lated to the transmission probability by the Landauer
formula®

28 .
G= %Tr(tﬁ ). (2)

where 7 is the 2 X 2 transmission matrix of the system. Our
results are given in terms of the dimensionless conductance
Gy=2¢>/h, being therefore equivalent to simply the trace of
the transmission matrix Tr(#f"). The localization length for
the DNA-like double-strand model is computed from the ex-
ponential decrease in the conductance and, based on the re-
sult by Johnston and Kunz,? defined by the relation

e P T oot
ID(E)=- lim N (In Tr(71")), (3)

Np— L

where (--+) means an average over several hundred different
double-chain configurations. This is done to avoid spurious
effects due to a particular configuration.

Another way established in the literature to determine the
degree of localization of a state, directly from diagonalizing
the Hamiltonian, is the PR,?>?* defined, in a tight-binding
approximation, by
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FIG. 2. Localization length as a function of energy for single
(dotted line) and double-strand (continuous line) DNA.
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where a; ; is the wave-function amplitude in the (i, ) site. In
the limit N; — o, the PR—0 for localized states. Consider-
ing finite systems, i.e., rigid boundary conditions, truly delo-
calized states PR reaches the maximum value of 2/3 for one-
dimensional ordered case.?® A quantity related to the PR is
PN=PR X 2N,,*! considering a double strand as depicted in
Fig. 1. While PR is a measure of a fraction, PN would be a
measure of the actual number of sites having appreciable
wave-function amplitudes at a given energy.

III. RESULTS AND DISCUSSION: LOCALIZATION
LENGTH AND WAVE-FUNCTION EXTENSION

The localization length as a function of energy, calculated
within the scheme delineated by Eq. (3), is depicted in Fig. 2
for two illustrative situations. The continuous line shows the
double ladder case emulating a double-strand DNA, while
the dotted line corresponds to the results for a single-strand
DNA-like chain. The interesting point here is the significant
enhancement of the localization length in the energy window
near the edges of the single-strand density of states. The
effect of connecting both chains and respecting the base pair-
ing is to enhance the localization length up to an order of
magnitude. Such enhancement has been reported in a previ-
ous work by means of a PR calculation'? and similar findings
have been published afterwards.!” The present calculations
are for finite systems 1250 bps long. Localization lengths of
the same order are obtained for fishbone and double strands
with backbone models treated also within a tight-binding
framework of effective sites.* The highest value of I,~70
bps would validate that the limit N; — o has been effectively
reached since [./N;<<1. It should be mentioned that double
strands without base pairing (not shown here) also present
higher /. than a single strand, but still significantly lower
than in the cases including base pairing.

A localization length /.~70 bps in a 1250-bp-long chain
would also suggest at a first glance that the corresponding
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FIG. 3. Wave function for states of the double-strand DNA-like
chain with different localization length. (a) A state with energy
E~10 eV and [.=~15 bps and (b) a state with energy
E=10.5 eV and [.~70 bps.

wave function would not extend significantly throughout the
ladder, but one should remind that in general /. is not a
measure of L% For very large systems this rather subtle
conceptual difference has no further consequences. However,
for smaller systems the difference between the [. and L,
could be important, and indeed they may differ by an order
of magnitude as discussed below.

In Fig. 3 two wave functions of the double strand 1250
bps long are depicted. In Fig. 3(a) a state with /.~ 15 bps is
clearly confined to a small portion of the system, while in
Fig. 3(b), a state with [, =70 bps spreads out over almost the
entire double chain. Also interesting is the fact that these
states show strong modulations, consistent with the presence
of resonances along the system.'” In other words, an expo-
nential envelope characterized by a localization length may
not grasp all the important aspects of the problem.

The degree of the wave-function localization depends on
the length of a finite system, whenever it is in the diffusive
regime up to the crossover to a localized regime. The two
quantities, PN and /., are analyzed as functions of chain
length at the energy E=10.6 €V [Figs. 4(a) and 4(b), respec-
tively]. Both quantities initially increase for short systems, as
expected for a diffusive regime or what we call as effectively
delocalized. More important are the strong fluctuations
shown by /., up to a chain length of N;~1000 bps. For
longer chains, the localization length remains constant,
1.=70 bps. Hence, N; = 1000 is the lower limit for a well-
defined [, from Eq. (3) applied to the present system. Ap-
proximately at the same length, on one hand, the PN begins
to saturate, Fig. 4(a), as generally expected for L>1.* On
the other hand, fluctuations in PN become more important, in
spite of the numerical average over many disorder configu-
rations. Indeed, fluctuations in PR have also been discussed
as a possible order parameter for localization-delocalization
transitions.** In summary, these are the aspects we focus on:
the lengths at which (i) the saturation of the PN and (ii) the
quenching of the fluctuations of /. occur.’
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FIG. 4. The participation number, (a), and localization length,

(b), at E=10.6 eV for the double-strand DNA-like model as a func-
tion of chain length in units of base pairs.

A measure of L, seems, therefore, to be possible by com-
paring the quenching of the fluctuations in /., together with
the clear saturation of the PN around 70 bps. Indeed, simple
inspection of the wave-function extension in Fig. 3(b) deliv-
ers an estimative comparable to the common threshold at
N;=1000 for the result trends in Fig. 4.

The qualitative measurement procedure for L, suggested
by the common threshold for both quantities (quenching of
the fluctuations of the localization length and saturation of
the PN as function of chain length) may be further refined by
a direct comparison of both /. and PN quantities. In Fig. 5
the PN and [, are compared for the entire energy spectrum
already depicted in Fig. 2. Figure 5(a) is for a 500-bp-long
double chain, while Fig. 5(b) is for a 2000-bp-long system.

This direct comparison delivers a precise evaluation of
Ly in the transition from localized to diffusive regimes,
where the localization length is comparable to the system
size. It is interesting to notice that /. represents an almost
exact envelope for PN for systems longer than L,;. Naively
one should expect that PN could be closer to a measure of
L than to /.. It should be mentioned that the PN shows a
stronger fluctuation than the values of /. since an appropriate
average over several hundred configurations in the case of
PN are numerically too costly. In the limit of long enough
systems, PN and /. show these similarities in values in spite
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FIG. 5. A comparison between localization length and PN
through the entire energy spectrum for DNA-like double chains of
different lengths: (a) 500 bps and (b) 2000 bps.

of being calculated in completely different ways. While the
PN is obtained from the diagonalization of a finite system, /.
is obtained from the transmission probability in an open sys-
tem, the scattering region embedded by semi-infinite leads.
The deviations between both quantities occur only for chains
that are shorter than L. Indeed, in Fig. 5(a) we see that for
smaller localization length (around E=7.0 eV and
E=~10.0 eV) the deviations are also smaller since in this
limit N; > 1. is better satisfied. Therefore we can envisage a
further characterization of the wave-function localization,
beyond simply defining /., by means of comparing two defi-
nitions of the degree of localization: PN and /. obtained from
the transmission probability. Such characterization should be
valid in both localized and diffusive regimes. It is obviously
meaningless in a truly delocalized system for which /. di-
verges and the PN has an upper bound of the finite chain
length taken for the calculation.

A complementary insight to the problem may be obtained
by directly inspecting the conductance as a function of the
length, instead of a derived quantity as /.. In Fig. 6 we depict
the conductance (averaged over several disorder configura-
tions for each length) at the energy associated to the highest
PN. In Fig. 6(a), for the DNA-like double chain, this energy
is E=10.6 €V, as already discussed. In Fig. 6(b) we illustrate
the behavior for a “fake” DNA, namely, a double chain with
similar  on-site  energies [g4=10.5 eV, &;=9.5 eV,
ec=10.3 eV, and £5=9.7 eV (Ref. 12)] but with a stronger
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FIG. 6. Conductance at a selected energy as a function of
double-chain length in units of base pairs. (a) The DNA-like system
and (b) for interchain stronger than intrachain hopping,
V'Iv=3/2.

interchain hopping: V'/V=3/2. In this case, the highest PN
occurs around E=14.7 eV. For both situations only one
transmission channel is connected to the leads used here, and
therefore, the upper bound for the conductance is G=G,.

For the DNA-like double chain in Fig. 6(a) a fast decrease
in the conductance with the system length can be observed,
while the fluctuation amplitude becomes comparable to the
conductance for lengths beyond a few hundred base pairs.
Besides rapid fluctuations associated to resonant effects that
are revealed at low conductances,'® important deviations
from a decrease described by a simple and smooth exponen-
tial envelope start to show up. It should be noticed, however,
that the conductance still shows appreciable values up to
several hundred base-pair-long chains.

On the other hand, the fake DNA in Fig. 6(b) is somehow
intriguing. The decrease in the conductance is very slow with
increasing length and remains smooth through the entire
range depicted here. It is noticeable that no significant fluc-
tuations in the conductance appear in the whole range of the
figure, meaning that the wave function continuously extends
up to the maximum length depicted. Our simulations reach
double chains as long as 10° bps, which may be considered
already within a macroscopic length scale. Having in mind a
measure of the base pairs spacing of 3.4 A, 10° bps repre-
sent 34 um. In fact, these results reveal not only such large
L, but also a [.=~10° bps, a value at which a tendency to
saturation only starts to show up. Such systems will show a
smooth PR with values close to the maximum (0.667 in one
dimension)?® for very long chains, as pointed out
previously.'>16
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IV. CONCLUSIONS

The question of how electronic states are localized in
double chains with a base-pairing correlation, emulating ef-
fective DNA-like systems, has motivated a wide range of
investigations, by far not completely covered in the refer-
ences mentioned in the above introduction. The main ques-
tion posed here, concerning an effective delocalization in
systems eligible for molecular electronic wiring, focuses on a
rather long length scale, suitable for tight-binding effective
models. Nevertheless, resonance transmission could not have
the highest impact on the transport properties as a whole,
albeit the interesting findings based on this view is concern-
ing point mutation effects in DNA.?’ Hole polaron formation
and hopping play an important role and lead to smaller
length scales, sometimes of the order of solely ten base
pairs,® nevertheless comparable to . for the ladder models
used here, both being smaller than the proposed wave-
function extension here.

In such an involved context, together with the importance
of the transport properties on a mesoscopic scale, emerges
the necessity of measuring the wave-function extension, L.,
besides solely the localization length, /.. In the present work
two well-known definitions of wave-function localization are
compared: the participation number and the localization
length from the conductance. The main findings are: (i) both
quantities deliver almost coincident values for L>1,, and (ii)
the system size for which deviation between both quantities
start to be appreciable is proposed to be a measure of L.
This measure coincides with the system length at which, on
one hand, the fluctuations in /. are suppressed, and on the
other hand, the participation number begins to saturate.
These findings are in the context of a dual scenario, namely,
addressing on one hand probing localization in open
systems?*3? compared to closed ones and, on the other hand,
establishing comparisons among different localization
definitions.*® It is worth mentioning that L,> [, for some of
the electronic states discussed here and, therefore, called as
effectively delocalized, while some toy models, like the one
illustrated in Fig. 6(b), may lead the measure of L to a
macroscopic length scale. These findings point to the neces-
sity of a comparative study of the various definitions of lo-
calization originally thought for defining delocalization-
localization transitions in the thermodynamic limit. As soon
as transport properties in a mesoscopic scale are concerned,
these usual definitions might be misleading and a careful
insight into the extension of the wave function is necessary.
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